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Crosstalk between DNA 
methylation and gene expression 
in colorectal cancer, a potential 
plasma biomarker for tracing this 
tumor
Mohammad Amin Kerachian   1,2,3*, Ali Javadmanesh3,4, Marjan Azghandi3,4, 
Afsaneh Mojtabanezhad Shariatpanahi3, Maryam Yassi3, Ehsan Shams Davodly3, 
Amin Talebi1,2, Fatemeh Khadangi5, Ghodratollah Soltani6, Abdorasool Hayatbakhsh6 & 
Kamran Ghaffarzadegan7

Colorectal cancer (CRC), the second leading cause of cancer mortality, constitutes a significant global 
health burden. An accurate, noninvasive detection method for CRC as complement to colonoscopy 
could improve the effectiveness of treatment. In the present study, SureSelectXT Methyl-Seq was 
performed on cancerous and normal colon tissues and CLDN1, INHBA and SLC30A10 were found as 
candidate methylated genes. MethyLight assay was run on formalin-fixed paraffin-embedded (FFPE) 
and fresh case and control tissues to validate the methylation of the selected gene. The methylation 
was significantly different (p-values < 2.2e-16) with a sensitivity of 87.17%; at a specificity cut-off of 
100% in FFPE tissues. Methylation studies on fresh tissues, indicated a sensitivity of 82.14% and a 
specificity cut-off of 92% (p-values = 1.163e-07). The biomarker performance was robust since, normal 
tissues indicated a significant 22.1-fold over-expression of the selected gene as compared to the 
corresponding CRC tissues (p-value < 2.2e-16) in the FFPE expression assay. In our plasma pilot study, 
evaluation of the tissue methylation marker in the circulating cell-free DNA, demonstrated that 9 out of 
22 CRC samples and 20 out of 20 normal samples were identified correctly. In summary, there is a clinical 
feasibility that the offered methylated gene could serve as a candidate biomarker for CRC diagnostic 
purpose, although further exploration of our candidate gene is warranted.

Colorectal cancer (CRC) constitutes a significant global health burden, leading to over 862,000 deaths globally 
in 2018. It is the second main cause of cancer mortality in the world and currently stands as the third most com-
mon cancer, with a yearly incidence of over one million and eight thousand cases worldwide1. Its leading cause 
of death is due to liver metastasis with a median survival rate of approximately 30 months. Generally, half of the 
patients with CRC develop tumor recurrences2. For early-diagnosed CRC patients, the 5-year survival rates are 
approximately 90% but this lowers to less than 10% in patients with extensive metastases. Thus, the most effective 
approach to reduce CRC incidence and its mortality is early detection of colonic lesions3. Fortunately, because of 
implementation and growth of wide spread cancer screening assays, such as colonoscopy as well as increasingly 
effective therapies, the mortality rate of CRC is lowering in many countries2.
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Flexible colonoscopy is considered as the golden screening option for this type of cancer. This procedure is an 
invasive method and has the highest rate of complications among other screening methods. Besides, it has about 
5% error probability, and is relatively expensive. A large number of people are reluctant to undergo colonoscopy 
because of the fear of pain, and discomfort or even embarrassment4. Altogether, colonoscopy includes patient 
non-compliance, invasiveness, and uncertain cost-effectiveness, which poses challenges in population-based 
screening5. All other available CRC screening methods seem to be used less frequently for various reasons. An 
ideal screening tool should be inexpensive, noninvasive, easy to perform, and accurate with high sensitivity for 
advanced adenomas or early cancer. It should be widely available and specific enough to avoid unnecessary sec-
ond level tests. Finally, it should reduce mortality rate significantly above the figure of approximately 30–40%. 
The fecal occult blood test (FOBT), used in population-based screening, was the first and cheapest noninvasive 
option, which is widely available now. However, this method requires several attempts and has a low sensitivity 
(59.7%). In recent years, more specific and sensitive methods such as the fecal immunochemical test (FIT) have 
replaced FOBT by the guidelines for CRC screening panel4.

In 2017, Wu et al. proposed a miRNA-based approach to quantify fecal blood levels over a broad, clinically rel-
evant range as a new marker class for FOBT. Candidate miRNA markers (hsa-miR-144-3 p, 144-5 p, 451 a, 486-5 
p, 363-3 p, 20b-5 p) were identified by small RNA sequencing of human whole blood compared with colorectal 
epithelia6. In addition, gut microbiota changes in the intestinal microbiota composition in CRC patients have 
also been reported as CRC biomarkers in several studies7. In the last two decades, many research concerning 
CRC potential biomarkers have focused on analyzing the fecal DNA8. Stool DNA test was approved by US Food 
and Drug Administration (FDA) in August 2014 and was available under the commercial name of Cologuard® 
(Exact Sciences, Madison, WI, USA). It is recommended for the average risk screening in asymptomatic 50–85 
years old9. Later, in April 2016 Epi proColon was introduced as the first FDA-approved blood-based CRC screen-
ing test. Epi proColon 2.0 CE is based on methylated septin 9 (SEPT9) gene from the circulating cell-free DNA 
(cfDNA) in the blood. It is now accessible in Europe and different nations such as China10,11. This test offers 
improved sensitivity and specificity over the first generation Epi proColon test11 although it has not been recom-
mended by the US Preventive Services Task Force in their most recent guidelines due to its very low sensitivity 
for cancer12. Based on a meta-analysis conducted by Song et al., the performance of the blood methylated SEPT9 
assay is superior to the serum protein biomarkers and FIT in symptomatic patients, while it seems to be less 
potent than FIT in asymptomatic patients13. In a recent meta-analysis comparing CRC patients with healthy 
subjects, the pooled sensitivity and specificity of SEPT9 methylation were 0.74 (95% CI: 0.61–0.84) and 0.96 (95% 
CI: 0.95–0.97), respectively14.

During recent years, the non-protein biomarkers so-called “liquid biopsy” of circulating tumor cells and 
circulating DNA or exosome products has drawn great attention4,15. Developing new biomarkers is relied on 
understanding the mechanisms exploited by cancer. A variety of biomarkers such as diagnostic, preventive and 
prognostic has been offered for CRC based the cellular and molecular tumorigenesis.

CRC represents a group of molecularly heterogeneous diseases characterized by genetic and epigenetic altera-
tions such as genetic mutations and DNA methylation, along with a tumorigenesis sequence2. DNA methylation 
alteration is a hallmark of not only CRC, but also virtually all tumor types. It represents a sophisticated molecu-
lar mechanism for annotating genetic information16, and in most cases, modulates the genetic expression level. 
Although the mechanism and the role of DNA methylation is not completely understood, it is assumed that DNA 
methylation could affect the binding of the transcription factors to their DNA target sites and subsequently, alter 
the expression of downstream genes17. In tumor cells, abnormal DNA methylation could be commonly classified 
into two groups: (1) site specific CpG island promoter hypermethylation, (2) global DNA hypomethylation. Several 
studies in tumor cells have elucidated site specific CpG island promoter hypermethylation in tumor suppressor 
genes and global DNA hypomethylation in repetitive sequences2. Besides, the gene body DNA hypermethylation 
in oncogenes is concerned with gene overexpression, suggesting that the genes regulated by DNA methylation 
are driving elements in tumorigenesis18. CpG islands (CGIs), shores and shelves that are the 2 kb and 4 kb regions 
immediately upstream and downstream of the CGI boundaries respectively, are also subjected to methylation. A 
recent study has shown that cancer specific differentially methylation occurs more often within CGI shores with 
low CpG densities, rather than CGIs with high CpG densities, indicating a distinct methylation profile in cancer19.

Today, DNA methylation could be mapped by whole-genome bisulfite sequencing (WGBS), which is currently 
the state-of-the-art technology to achieve a comprehensive, nucleotide-resolution view of the entire epigenome. The 
methylated differences among samples are generally determined by differentially methylated regions (DMRs). The 
detection of methylation alterations between cancer patients and normal individuals requires to take the variation of 
relative methylation within each group into consideration. Such variations could be associated with several technical 
and biological issues including unequal cytosine conversion rates, different library preparation protocols, different 
technical methylation assays and the existence of the natural epigenetic variations among individuals17.

In this study, we sought to identify candidate genes for the accurate detection of CRC as novel biomarkers 
based on the methylation profile and gene expression. There is a clinical feasibility that the methylation biomark-
ers could be used for detection of CRC. An accurate, noninvasive method based on the methylation biomarkers 
for early detection and screening of CRC as a complement to colonoscopy has the potential to improve patient 
satisfaction and the overall effectiveness.

Results
Discovery.  Methylation sequencing data processing and quality control.  The platform of this study is illustrated 
in Fig. 1. To perform a genome-wide analysis of DNA methylation in CRC, we applied SureSelectXT Human Methyl-
Seq approach with 101 read length that generates 57–76 million Illumina sequencing reads for each sample. Of these, 
88.5% to 89.8% were successfully mapped to either strand of the human genome (GRCh37/19). The average number 
of times that each CpG has been sequenced per sample was between 19.26X and 24.43X (Supplementary Table S1).
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DMR detection.  Several thousand hyper and hypo methylation DMRs were detected in multi-samples by com-
paring CRC and normal groups. In total, we identified 5780 hyper and 8909 hypo DMRs with the length of more 
than 200 bp, with the highest fold difference score between these two groups, and also with the p-value and false 
discovery rate (FDR) less than 0.05. Figure 2A,C indicate that the majority of detected DMRs in both hyper 
and hypo categories were located in the intergenic regions (90%). Seventy one percent of the hyper DMRs were 
annotated in CpG islands, in comparison with only 17% of the hypo DMRs allocated in these regions. It is worth 
noting that, the most percentage of the hyper DMRs regions were located in CGI shores, exons, promoters and 
CGI shelves.

As the detected DMRs were larger than 200 bp, some of them were expanded in several regions of the genome, 
possessing more than one annotation feature. Figure 2B,D illustrate the expansion of the detected hyper and 
hypo DMRs’ annotation, respectively. To clarify, the majority of the DMRs located in the intergenic regions were 
expanded to the intronic regions both in hyper and hypo categories (Fig. 2).

We assessed the distribution of DNA methylation changes across the genomic features based on fold dif-
ference score in hyper- and hypo-methylation (Supplementary Fig. S1). The distribution of DNA methylation 
changes in promoter (opensea) and gene body (opensea) were lower than other features in hyper-methylation, 
while promoter (island, shore, shelf) and gene body (island, shore, shelf) had similar variation. The distribution 
of DNA methylation changes in promoter (opensea) and gene body (island, shore, shelf and opensea) were lower 
than promoter (island, shore, shelf) in the hypo-methylation state. The variation of fold difference score in hyper- 
and hypo-methylation ranged from 0.2 to 6.6 and 0.3 to 6.3, respectively.

In the present study, we evaluated the overall DNA methylation patterns across different genomic features in 
hyper- and hypo-methylation states (Fig. 3A,B). We assessed the prediction performance with support vector 
machine classification method (SVM)20 towards the discrimination between CRC and normal groups on DNA 
methylation patterns from different genomic features. The most accuracy predictors were the gene body (shelf) 
86.33% followed by the gene body (opensea) 79.33%, whereas the promoter (opensea) was 54% that is the least 
accuracy in hyper-methylation patterns. In hypo-methylation patterns, promoter (island) and gene body (shore) 
had the most accuracy predictors in the values of 93% and 91.66%, respectively. However, the gene body (shelf) 
was 71.66%, which is the least accuracy in hypo-methylation patterns. The accuracy of SVM20 classification on 
DNA methylation patterns across different genomic features were shown in (Fig. 3C).

We performed comprehensive DNA methylation profiling based on the detected hyper and hypo DMRs 
between our CRC and normal groups, illustrated in Fig. 4A. We also assessed the mutation status of KRAS and 
BRAF in all samples. Three out of 6 CRC samples (T31, T35 and T65) were detected as positive- KRAS somatic 
mutation but no mutation was detected in normal samples. BRAF somatic mutation was detected in only T20. A 
hierarchical model (hCluster) clustering approach was used on the 315606 variable CpGs. We identified 3 distinct 
CRC subgroups, described as cluster 1 (N = 1, T20), cluster 2 (N = 2, T45 & T67) and cluster 3 (N = 3, T31, T65 
& T35), having mutation status of positive BRAF and negative KRAS in cluster 1, negative BRAF and negative 
KRAS in cluster 2 and negative BRAF and positive KRAS in cluster 3. Cluster 1 and cluster 3 were represented as 

Figure 1.  Project workflow. Discovery and technical validation set: CRC and normal DNA samples collected 
for the study of NGS. Bioinformatic analysis set: Bioinformatic analysis among Methylation and Expression 
database and current expriment for detecting robust hypo- hyper methylation genes. Biological validation 
and tissue expression set: CRC and normal FFPE samples used for Biological validation and candidate gene 
expression by real time PCR. Plasma study sets: CRC and normal plasma samples used for methylation study of 
candidate gene.
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intermediate- and high-relative methylation among CRC samples, while cluster 2 with low-relative methylation, 
was similar to the normal relative methylation pattern. DNA methylation changes’ pattern among CRC samples 
in hyper- and hypo-methylation were higher and lower than normal samples, respectively. Figure 4B shows a 
pair-wise correlation coefficients of DNA methylation changes’ pattern in hyper- and hypo-methylation between 
CRC and normal samples. The overall CpG methylation profiles between cluster 2 (T45 & T65) and normal sam-
ples were highly correlated as pairwise correlation coefficients ranged from 0.80 to 0.89 in hyper-methylation, 
while the correlation between cluster 1 and cluster 3 were low, ranged between 0.4 and 0.5 in hyper-methylation. 
Furthermore, the correlation between CRC and normal samples were ranged from 0.6 to 0.8 in hypo-methylation.

Robust genes in CRC and gene ontology.  Online analysis was performed by GEO2R software to identify DEGs 
(differentially expressed genes) or DMGs (differentially methylated genes). By comparing DEGs from the expres-
sion datasets with the current experiments, we detected 14 common DEGs including 4 hyper-methylated/
down-regulated, 2 hyper-methylated/up-regulated, 4 hypo- methylated/down-regulated and 4 hypo-methylated/
up-regulated. The detailed information regarding expression levels were shown in Supplementary Table S2. 
Common DMGs between the current experiments and the methylation datasets were 827 genes in 2 categories 
including 449 hyper-methylated genes and 378 hypo-methylated genes. According to the flowchart that was pre-
sented in Fig. 1, by comparing these differentially methylated genes with gene expression datasets from microar-
ray datasets, 78 common genes were recognized as functionally methylated genes. Gene ontology of these genes 
demonstrated that the majority of terms were related to cell differentiation, tissue development and embryonic 
organ morphogenesis (Fig. 5 and Supplementary Fig. S2).

Besides, comparing these 78 genes with methylation arrays resulted in only 3 common genes SLC30A10 
(hyper- methylation/down-regulated), INHBA (hypo-methylation/up-regulated) and CLDN1 (hypo-methylation/

Figure 2.  Statistic information of Hyper-Hypo Methylation DMRs annotation.
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up-regulated) that were robustly appeared among previous studies and our current experiment. Statistics infor-
mation from expression and methylation values for candidate genes were shown in Table 1.

Technical and biological validations.  The technical validation was performed by methylation sensitive 
high-resolution melting (MS-HRM) on the discovery sample set in CRC and normal control groups. They were 
accordingly discriminated based on methylation sequencing results.

Methylated DNA markers (MDMs) were identified for our candidate genes and primers and probes were 
designed and synthesized for the top MDM considered as a diagnostic biomarker.

The candidate MDMs, hyper- methylated/down-regulated, were tested by MethyLight assay on DNA extracted 
from 39 and 47 formalin-fixed paraffin-embedded (FFPE) case and control tissues, respectively. We also per-
formed the experiment on 28 case and 26 control fresh tissues. The results showed that the methylation at MDM 
was significantly different (t-test, p-values < 2.2e-16; mean of Cq case 29.58 and mean of Cq control 36.27 for 
FFPE tissues and t-test, p-values = 1.163e-07; mean of Cq case 29.69 and mean of Cq control 34.96 for fresh tis-
sues) with the sensitivity of 87.17% and 82.14% at a specificity cut-off of 100% and 92% for FFPE and fresh tissues, 
respectively (Table 2).

To evaluate the ability of the entire biomarker to correctly classify between the two possible conditions (can-
cerous vs. control), we built a support vector machine learning model (SVM)20, using the GSE42752 dataset as a 

Figure 3.  Heatmap representation of Human Methyl-seq data between CRC and normal samples in (A) hyper- 
methylation (B) hypo- methylation DMRs on different genomic features [Promoter (Island), Promoter (Shore), 
Promoter (Shelf), Promoter (Opensea), Genebody (Island), Genebody (Shore), Genebody (Shelf),Genebody 
(Opensea)], (C) Accuracy of SVM classification model on different subsets of genes.

Figure 4.  (A) Heatmap representation of DNA Human Methyl-seq data between CRC and normal samples on 
whole genes. Each column represents one sample and each row represents CpGs methylation status in hyper- 
hypo Methylation DMRs identified by DMRFusion. (B) Pair-wise correlation coefficients matrix comparing 
DNA methylation between CRC and normal groups in hyper- hypo methylation.
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Figure 5.  Functional enrichment analysis of regulatory network of hyper/hypo methylated genes with 
significant changes in transcription level.

Group Gene Abbreviation Gene Full Name
Current 
experiment (FDS)

Expression array (logFC)

GSE28000 GSE21815 GSE44076 GSE68468

Hyper Methylation 
Down regulated SLC30A10

Solute Carrier 
Family 30 
Member 10

0.37

−2.04 −2.87 −2.16 −2.38

Methylation array (logFC)

GSE48684 GSE53051 GSE77718 GSE101764

0.28 0.44 0.25 0.19

Hypo Methylation 
Up regulated CLDN1 Claudin 1 2.29

Expression array (logFC)

GSE28000 GSE21815 GSE44076 GSE68468

2.29 3.14 5.09 4.98

Methylation array (logFC)

GSE48684 GSE53051 GSE77718 GSE101764

−0.17 −0.38 −0.22 −0.31

Hypo Methylation 
Up regulated INHBA Inhibin beta A 

subunit 1.54

Expression array (logFC)

GSE28000 GSE21815 GSE44076 GSE68468

2.88 4.64 3.51 5.12

Methylation array (logFC)

GSE48684 GSE53051 GSE77718 GSE101764

−0.168 −0.24 −0.21 −0.23

Table 1.  Statistical information of expression and methylation values in candidate genes (SLC30A10, CLDN1 
and INHBA).
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training set and the GSE52270 as a test set with 10-fold cross validation. The sensitivity and specificity results of 
classification methods were 91.93% and 82.85%, respectively. In total, 329 DMRs were recognized with an impact 
on transcription.

Tissue expression of candidate genes.  We performed RT-qPCR to compare the expression profile of candidate 
gene (SLC30A10) between case and control FFPE tissues. The reference gene of GAPDH was used as a reference 
control in the experiment. The expression pattern revealed that the candidate gene was expressed in both case and 
control FFPE tissues with a significant difference. As shown in Supplementary Fig. S3, normal tissue mRNA elu-
cidated a significant 22.1-fold upregulation as compared to the CRC tissues (p-value < 2.2e-16 mean of Cq case 
32.51 and mean of Cq control 27.84) (Table 2). Hence, the expression level was significantly lower in cancerous 
tissues.

Tissue-specific methylation study.  In order to study the specificity of the candidate MDM (hyper- methylated/
down-regulated), it was also tested by MethyLight assay on gastric, liver and esophagus cancer tissues. The results 
were statistically not significant (p value > 0/05) indicating that the levels of methylation in these cancers were 
similar to the normal colon tissue.

Type

Biological FFPE tissue 
validation

Biological fresh tissue 
validation Tissue expression Plasma study

Cases Control Cases Control Cases Control Cases Control

Number (N = 39) (N = 47) (N = 28) (N = 26) (N = 33) (N = 35) (N = 22) (N = 20)

Gender

Male 23 (59%) 27 (57%) 19 (68%) 18 (69) 19 (57%) 17 (48%) 13 (59%) 11(55%)

Female 16 (41%) 20 (43%) 9 (32%) 8 (31) 14 (43) 18 (52%) 9 (41%) 9 (45%)

Age at Diagnosis (Year)

Median 58 61 67 59 59 56 67 56

Range [24–85] [24–85] [44–82] [45–84] [24–85] [35–77] [44–82] [45–84]

Tumor site

Anal 0 0 0 0 0 0 0 —

Rectum 3 (8%) 4 (8%) 10 (36%) 9 (35%) 2 (6%) 0 8 (36%) —

Sigmoid 20(51%) 24 (51%) 6 (21%) 12 (46%) 18 (54%) 21 (60%) 4 (18%) —

Transverse colon 0 0 0 0 0 0 0 —

Descending colon 4 (10%) 5 (11%) 1 (3%) 0 3 (9%) 7 (20%) 1 (5%) —

Ascending colon 7 (18%) 7 (15%) 3 (11%) 1 (4%) 5 (15%) 0 3 (14%) —

Cecum 2 (5%) 2 (4%) 8 (29%) 4 (15%) 2 (6%) 0 6 (27%) —

Entire colon 3 (8%) 5 (11%) 0 0 3 (9%) 7 (20%) 0 —

TNM stage

I 7 (18%) — N/A — 6 (18%) — N/A —

IIA 8 (21%) — N/A — 6 (18%) — N/A —

IIB 2 (5%) — N/A — 2 (6%) — N/A —

IIC 1 (2%) — N/A — 1 (3%) — N/A —

IIIA 2 (5%) — N/A — 2 (6%) — N/A —

IIIB 10 (26%) — N/A — 7 (21%) — N/A —

IIIC 9 (23%) — N/A — 9 (27%) — N/A —

IVA 0 — N/A — 0 — N/A —

IVB 0 — N/A — 0 — N/A —

Tumor size

≥4 15 (39%) — N/A — 10 (30%) — N/A —

4.1–7.9 20 (51%) — N/A — 20 (61%) — N/A —

8–11.9 2 (5%) — N/A — 1 (3%) — N/A —

≤12 cm 2 (5%) — N/A — 2 (6%) — N/A —

Mean of Cq 29.7 35.5 29.7 35 32.5 27.8 36.3 0

KRAS mutation 19 (49%) — 9 (32%) — 12 (36%) — 6 (27%) —

BRAF mutation 9 (23%) — 3 (11%) — 5 (15%) — 2 (9%) —

Diagnostic

Sensitivity 87% 82% — 41%

Specificity 100% 92% — 100%

Table 2.  Patients and the tumor characteristics of CRC adenocarcinoma in FFPE, fresh tissue and plasma 
studies. *N/A: Not applicable.
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Plasma pilot study.  Methylation of the top MDM was assessed in circulating DNA of CRC patients and normal 
individuals. Nine out of 22 CRC samples and 20 out of 20 normal samples were identified correctly (Table 2). 
Besides, the methylation pattern of the top MDM was studied in BLUEPRINT Epigenome database. Based on the 
BLUEPRINT Epigenome results, the methylation percentage of blood-borne cells for the MDM was lower than 
0.10%, indicating a poorly methylation level of hematopoietic cells. It is worth mentioning that the methylation 
profile of normal blood was similar to the normal colon (data not shown).

Discussion
DNA CpG methylation is usually associated with a closed state of chromatin and has been widely accepted as an 
important mechanism to maintain gene repression21. In addition to control gene expression, it is known to be a 
cancer driver mechanism. DNA methylation is negatively correlated with gene expression but so far this asso-
ciation can only be detected for hundreds of genes, and the correlation direction is both positive and negative22.

In the current study, we investigated the interplay between CpG methylation and gene expression. Common 
DMGs between the current experiments and the methylation datasets were 827 genes in 2 categories includ-
ing 449 hyper-methylated genes and 378 hypo-methylated genes. Gene ontology analysis for methylated genes 
showed that the majority of pathways were involved in cell differentiation including smooth muscle cell differen-
tiation (GO: 0051145), positive regulation of animal organ morphogenesis (GO: 0110110), embryonic hind limb 
morphogenesis (GO: 0035116), and positive regulation of cell junction assembly (GO:1901890). Any aberration 
in these pathways could result in abnormal cell division or differentiation23. Three genes: SLC30A10, CLDN1 and 
INHBA were eventually selected. SLC30A10 was hyper-methylated and down-regulated, CLDN1 and INHBA 
were hypo-methylated and up-regulated. Based on the annotation, the DMR were located in CpG island/shore, 
shore and shore of SLC30A10, CLDN1 and INHBA, respectively. These results are in agreement with other reports 
showing that in cancerous tissue distinct methylation profiles are exhibited more frequently within CpG island 
and shores19.

From the candidate genes, MDMs were tested by MethyLight assay on the DNA extracted from 39 and 47 
FFPE case and control tissues, respectively. The results showed that the methylation at MDM was significantly 
different (p-values < 2.2e-16) with a sensitivity of 87.17% at a specificity cut-off of 100%. Methylation studies on 
fresh tissues (28 CRC vs 26 control samples), indicated very similar results (p-values = 1.163e-07) with a sensitiv-
ity of 82.14% at a specificity cut-off of 92%.

In the current study, significant differences in RNA levels were seen in our candidate gene when comparing 
cases with controls. We reported a negative correlation in methylation and gene expression in SLC30A10 gene, 
which was hyper-methylated and down-regulated in the same tissue samples.

SLCs are the second largest family of membrane proteins in the human genome, which transport a broad spec-
trum of substrates such as nutrients and drugs. The SLC proteins control key physiological functions, including 
nutrient uptake, ion transport, and could also function as tumor suppressors24–26. The tumor suppressive function 
of SLCs relates to the inhibition of histone deacetylases (HDAC) and intracellular pH regulation27. This superfam-
ily are located in all cellular and intracellular organelle membranes, except the nuclear membrane28.

In recent years, increasing attention has been given to the role of plasma membrane transporters such as SLCs 
in cancer. Some SLCs are upregulated in tumor cells due to higher energy and nutritional requirements29.

The SLC30 family is comprised of 10 members. They are involved in transport of zinc (Zn) and manganese 
(Mn), which are so important in resisting programmed cell death, since Zn has been demonstrated to play a role 
in a number of cancers30 such as prostate cancer27. Besides, Mn is an essential metal that is required for various 
cellular enzymatic activities31,32. It may inhibit the acetylation of histone H3 and H4 by increasing and decreasing 
the activity of HDAC and histone acetyltransferase (HAT), respectively, which eventually causes cell damage and 
apoptosis33. Shangkuan et al. identified SLC30A10 as a candidate gene among the ten recommended candidate 
genes correlated with CRC using bioinformatics analysis of microarray data from the GEO database34. In a recent 
study from Yagi et al. they reported SLC30A10 as a methylation marker in the CRC. Furthermore, they suggested 
that methylation epigenotype significantly correlated with KRAS and BRAF mutation35.

The claudin (CLDN) family, consists of at least 24 members, and their expression depends on the cell type. 
Recent reports have shown that the expression of CLDN genes is often altered in cancers. CLDN1 is a capital com-
ponent of tight junctions (Tjs), which plays an essential role in tumorigenesis36. The role of CLDN in cancer has 
not been clearly identified, but a recent study suggested that the CLDN1-dependent pathway might be involved in 
the suppression of CRC expression and correlated to tumor invasiveness and prognostic factors37.

INHBA (Inhibin β A) is a member of the transforming growth factor β (TGF-β) superfamily. It is able to 
grossly induce embryonic stem cell differentiation. Notwithstanding, the INHBA’s role in cancer has not been 
fully explained. Recent studies have shown that INHBA gene is overexpressed in cancer38 and correlates with 
cell proliferation and outcomes in several tumors such as lung39, gastric40, esophageal41, and colorectal38 cancers. 
Wildi et al. found that activing A, a homodimer of INHBA, is also up-regulated in human CRC42. However, only a 
few studies have investigated the epigenetically regulation of this gene in cancer. Seder et al. investigated the role 
of epigenetic regulation of INHBA gene expression in esophageal cancer cells. They suggested that overexpression 
of INHBA may promote cell proliferation and may be affected by promoter methylation and histone acetylation41. 
The MDM identified in this study, presenting a specific methylated region in the SLC30A10 gene, has not previ-
ously been reported.

To suggest the candidate MDM as a blood biomarker, we assessed the epigenetic signatures of white blood 
cells, which compose the largest portion of circulating DNA in plasma43. The methylation pattern of the top 
MDM was studied in BLUEPRINT Epigenome and based on this database, the methylation percentage of 
blood-borne cells for the MDM was very low (<0.10%), suggesting our candidate MDM as a serum diagnostic 
biomarker. In addition, in the plasma pilot study we were able to display the methylation pattern of our MDM 
in plasma cfDNA in CRC patients although the sensitivity was not relatively high. It remains to be determined if 
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technical refinements can improve this issue. Reassessment of the pre-analytical procedures including collecting 
larger blood volumes, given that the Epi proColon kit requires at least 3.5 ml of plasma for the evaluation of gene 
methylation11 and utilization of more specific collection tubes designed for ctDNA recovery and standardization 
of blood processing could ameliorate the plasma results. In addition, advanced technology assay implementa-
tion including BEAMing (beads emulsion amplification magnetics), digital droplet PCR, and Target Enrichment 
Long-probe Quantitative Amplified Signal (TELQAS) could progressively enhance the ability to detect aberrant 
methylated ctDNA among the total cfDNA in a clinical sample43. The performance outcome observed in the 
pilot plasma testing would need to be corroborated in further plasma studies in order to compare its results with 
available blood tests such as septin 9 blood test. There is only one FDA-approved plasma-based DNA methyla-
tion biomarker test for CRC in the market44. These days, finding novel biomarkers that are simple, cost-effective, 
highly specific and sensitive has led to a large clinical interest.

Despite these encouraging early results, there are several potential limitations to the present study. First, 
patients were enrolled from a limited referral centers. More centers should be involved. Sample sizes especially in 
plasma phase were not sufficiently large to study the actual performance of the MDM in plasma. Since the main 
purpose of this study was to find new biomarkers for CRC detection, a plasma pilot study was performed only to 
demonstrate the eligibility of the candidate gene as a biomarker in plasma. This plasma study was performed in 
order to evaluate the feasibility, and improve on the study design prior to conducting the entire research project 
(an ongoing project by the authors’ group). To establish a sensitive approach for solving the technical problems 
of cfDNA methylation detection in liquid biopsy, we developed and optimized a single tube methylation detec-
tion method by selective capture and bisulfite conversion of cfDNA on magnetic beads (unpublished data). This 
method could significantly improve pre-analytical phase of the diagnostic test leading to a higher sensitivity and 
specificity for the candidate biomarker in plasma. Thus, further plasma phase studies are needed. The overall 
sensitivity will be improved with optimized methods as described earlier. Last but not least, further studies are 
needed to evaluate the organ site specificity of the MDM candidate. In this initial study, we explored a novel 
MDM for the detection of CRC. There is a clinical feasibility that the candidate MDM could be used for early 
detection of CRC. Besides, our candidate MDM could be also studied in precancerous lesions, along with the 
oncogenic cascade from metaplasia through adenoma to CRC.

Materials and Methods
Study design.  This study had multiple components illustrated in Fig. 1. Following sample collection, it 
began with a discovery step based on unbiased methylome sequencing using SureSelectXT Methyl-Seq. Regions 
demonstrating significant differential methylation were identified and technically validated as candidate DMRs. 
Candidate methylated genes were chosen based on the shared genes with several other methylation (GSE48684, 
GSE53051, GSE77718, GSE101764) and expression (GSE28000, GSE21815, GSE44076, GSE68468) datasets. 
MDMs were chosen based on several criteria including methylation fold change, absolute methylation difference, 
area under the receiver-operator curve and percentage of control sample methylation.

Biospecimen sources.  The current study was approved by Mashhad University of Medical Sciences 
(MUMS) ethics committee (approval number: 975011) and all methods were performed in accordance with 
the relevant guidelines and regulations of MUMS. Informed written consent had been obtained from all partic-
ipants in this study. Patient samples with adenocarcinoma of CRC (N = 6) had a tentative diagnosis determined 
by colonoscopy. The lesions were removed during endoscopy and confirmed by pathology evaluation at Reza 
Radiotherapy and Oncology Center (RROC) and Mashhad Pathobiology laboratory by two gastroenterology 
expert pathologists. Paraffin embedded tissue samples were obtained from Razavi Hospital, Mashhad, Iran. CRC 
patients with stages I, II & III diseases were included. Excluding criteria of the study were patients with previous 
CRC, other cancers, positive familial history of adenoma polyposis, inflammatory bowel disease, hereditary CRC 
and patients with incomplete colonoscopy and documentations. Colorectal tissue controls (N = 6) were taken 
from individuals who underwent CRC screening by colonoscopy who were negative for adenomatous polyps and 
CRC through the entire colon and rectum. Demographic characteristics, colonoscopy reports, history of drug, 
and smoking as well as medical history were collected. The location of lesion was defined as anal, rectum, sig-
moid, transverse colon, descending colon, ascending colon, and cecum. The data is presented in Supplementary 
Table S3.

Discovery.  SureSelectXT Methyl-Seq.  First, the purity and quantity of DNA tissue samples were evaluated. 
For passing sample quality control, we included the minimum condition [concentration ≥ 50 ng/μ, purity 
(A260/A280) ≥ 1.7, volume ≥ 20 ng/μ, total amount ≥ 3.0μg]. The global methylation profiles of cancer and nor-
mal colon tissues were analyzed using SureSelectXT Human Methyl-Seq. This platform assesses 84 mega bases 
(MB) of genome, 3.7 million CpGs, 19.6 Mb CpG islands, 9.8 Mb cancer- and tissue- specific DMRs, 37 MB 
GENCODE promoters, 48 MB enhancers, CpG island shores/shelves ± 4 Kb and DNase I hypersensitive sites45. 
Sequencing was performed on the Illumina HiSeq. 4000 (Macrogen Co., South Korea).

Identification of DMRs.  To detect DMRs, we used the DMRFusion tool which could assess the optimal and sig-
nificant hyper- and hypo-methylation DMRs in the genome with minimum redundancy and maximum relevance 
between cancer and control groups. DMRFusion describes the annotation of DMRs such as the nearest tran-
scription start site (TSS), CGIs/shores/shelves, and regions within genome and visualizes DMRs with high fold 
difference score (p-value and FDR < 0.05 and type I error < 0.01) as described earlier17. The Human Methyl-Seq 
analysis was composed of three steps in the pre-processing stage before detecting DMRs. Firstly, the total reads 
were assessed by Quality Control (QC) tool46 in order to provide informative global and graphical representations 
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of methylation sequencing read quality, prior and after alignment. In this study, our data had high quality in raw 
sequencing reads among all samples. Secondly, the raw sequencing reads were cleaned by Trim Galore (https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to clip sequencing adapters (Illumina universal 
adapter) and low quality bases (Q < 67 in Illumina) in the 3′ and ambiguous bases in both reads. Thirdly, these 
raw bisulfite sequencing data were converted into a number of methylated reads and covered reads of cytosines 
(including unmethylated/methylated reads) by aligning them to the human reference genome (GRCh37/19) 
using the Bismark tool47.

Identification of shared differentially regions.  In the present study, gene expression profiling datasets (GSE28000, 
GSE21815, GSE44076, GSE68468) and gene methylation profiling datasets (GSE48684, GSE53051, GSE77718, 
GSE101764) were obtained from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), of the 
National Center for Biotechnology Information (NCBI). Gene expression included data from 509 CRC and 154 
normal mucosa tissue samples. Hundred and ninety three CRC and 161 normal mucosa specimens were enrolled 
in gene methylation profiling datasets. Data from each microarray and methylation were separately analyzed by 
online software GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), in order to analyze the DMGs or DEGs by 
comparing two groups of samples (CRC and normal mucosa tissue) across setup conditions in a GEO series. 
These DEGs and DMGs were compared with our current experiment results (hypo- or hyper-methylation DMRs) 
in order to detect robust hypo- or hyper- methylation genes existing in different populations.

In this study, we used p-value and adjusted p-value < 0.05 as the cut-off standard to define DEGs with abso-
lute |fold change| > 2 and DMGs with absolute |fold change| > 0.1. Common hypo-, or hyper- methylation genes 
were suggested by comparing gene expression and methylation datasets with the result of our current exper-
iment. Thus, the methylation status of the candidate genes were in accordance with gene regulation through 
gene-specific mechanisms. The overlapping down-regulated and hyper-methylation genes were identified as 
hyper-methylated, and poorly expressed. Similarly, overlapping upregulated and hypo-methylation genes were 
considered hypo-methylated, and highly expressed genes. The flowchart illustrating our bioinformatics analysis 
was presented in Fig. 1.

According to the following criteria: (1) [case/control] methylation fold change (FC) > 20, (2) [case – con-
trol] absolute methylation difference (AMD) > 0.10, (3) area under the receiver-operator curve (AUC) > 0.80, 
p-value < 0.01, (4) control sample methylation < 1.0%, the candidate MDM was identified among the candidate 
genes derived from Fig. 1.

Technical validation.  Methyl-Seq data reliability was validated by MS-HRM analysis. The MS-HRM technical 
validation was performed on the discovery sample set. Briefly, primers specific for bisulfite converted sequences 
were designed (MethPrime 2.0 software package) and synthesized (Metabion, Germany). Prior to use, MS-HRM 
assays were evaluated on methylated and un-methylated bisulfite converted control DNA. Optimal annealing 
temperatures were determined empirically. Genomic DNA isolated from fresh cancerous and normal colon tissue 
samples were quantitated by Epoch Microplate Spectrophotometer (Winooski, Vermont, USA). Subsequently, 
DNA was bisulfite-converted using EpiTect Fast Bisulfite Conversion Kit (Qiagen, Germany) according to the 
manufacturer’s instructions and amplified using the LightCycler 96 (Roche, Mannheim, Germany).

Biological validation.  Tissue validation.  Specific probe and primers for MethyLight assay were designed 
(MethPrime 2.0 software package) and synthesized (Bioneer Corporation, South Korea). The MethyLight assay 
was run on DNA extracted from 39 and 47 independent FFPE and 28 and 26 fresh case and control tissues, 
respectively. The DNA was extracted using the QiaAmp FFPE Tissue Mini kit (Qiagen, Germany) and QIAamp® 
Fast DNA Tissue Kit (Qiagen, Germany) for FFPE (5 sections, 5–10 µm thick) and fresh tissues (5–25 mg, each 
specimen), respectively. They were bisulfite treated with the EpiTect Fast Bisulfite Conversion Kit (Qiagen, 
Germany) as described above. For MethyLight assay, the multiplex PCR reactions were performed on bisulfite 
converted DNA using QuantiTect Multiplex PCR (Qiagen, Germany). All amplifications were assayed on the 
LightCycler 96 (Roche, Mannheim, Germany), and the results were normalized to the β-actin from the same 
sample.

KRAS and BRAF mutation detection.  All samples were tested for the most common and known KRAS and 
BRAF mutations for exon 12 and 15, respectively based on a protocol previously published48,49. The details are 
described in Supplementary Fig. S4 and Table 2.

Tissue expression of candidate gene.  Total RNA from 33 and 35 FFPE case and control tissues were isolated 
using RNeasy FFPE kit (Qiagen, Germany), according to the manufacturer’s protocol. The RNA was quantified 
by measuring absorbance at 280, 260 and 230 nm in Epoch Microplate Spectrophotometer (Winooski, Vermont, 
USA). cDNA was synthesized using the RocketScript RT premix (Bioneer, Korea). The gene specific primer tar-
geting the candidate, SLC30A10, and GAPDH genes were designed (by primer premier 6 software) and synthe-
sized (Eurofins, Germany). Quantitative real-time RT-PCR reaction was carried out using HOT FIREPol qPCR 
mix with EvaGreen (Solis BioDyne- Estonia) on the LightCycler 96 (Roche, Mannheim, Germany) and the exper-
iment was conducted in duplicate for each sample. Five point-standard curve was tested for each primer using 
the pooled cDNA from all samples. The pooled cDNA, serially diluted in nuclease free water by 2 fold, was used 
as template for real time RT PCR. After the PCR, mRNA levels were normalized to GAPDH and the relative 
expression was determined using the 2-ΔΔCT method. All experiments were carried out according to the digital 
MIQE guidelines50.
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Tissue-specific methylation study.  We also tested the MDM identified in this study (hyper-methylated/
down-regulated) in FFPE tissues of other cancers, including gastric (N = 12), liver (N = 7) and esophagus (N = 8) 
cancers. The DNAs were extracted using the QiaAmp FFPE Tissue Mini kit (Qiagen, Germany) and bisulfite 
treated with the EpiTect Fast Bisulfite Conversion Kit (Qiagen, Germany). For MethyLight assay, the multiplex 
PCR reactions were performed as described above.

Plasma pilot study.  Prior to plasma pilot study, the methylation behavior of the top MDM in blood was explored 
using online BLUEPRINT tool (Software release: 1.0.5, EnsEMBL version: 79, http://www.blueprint-epigenome.eu/).  
In the plasma study, the top MDM was assessed with MethyLight assay on cfDNA obtained from CRC patients 
and normal individuals. The cfDNAs were extracted from 1–3 mL plasma of 22 cases and 20 controls using 
QIAamp Circulating Nucleic Acid Kit (Qiagen, Germany) according to the manufacturer’s protocol and 
bisulfite-converted (as above). A multiplex PCR reaction was performed on bisulfite converted DNA for the can-
didate MDM and β-actin gene. The MethyLight assay was normalized to the products of β-actin gene. The PCR 
run was performed in triplicates and similar to the conditions of tissue validation.

Gene ontology analysis.  Hyper- and hypo-methylation DMRs with a significant impact on transcription were 
selected to draw a network of GO terms and pathways by ToppCluster51 and ClueGo (2.5.3), a Cytoscape appli-
cation52. Both networks were visualized by Cytoscape (version 3.7.1). Molecular Function, Cellular Components 
and Biological Process terms were selected as standard GO terms in both applications.
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